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Preview

This chapter introduces fundamental concepts of abstract probability theory, which serves as
a focused digest of essential topics from real analysis required in the subsequent chapters. We
begin by defining a o-algebra on a sample space €2, which formalizes the notion of measurable
events. Next, we present the definition of probability from a measure-theoretic perspective.
Finally, we introduce random variables as measurable functions defined on the probability
space.

Key topics in this chapter:

1. o-algebra;

2. Probability as a measure;

3. Random variables as measurable functions;
4

. Distributions of random variables.

1 Sigma Algebra

Let 2 be a sample space, and let F be a collection of subsets of 2, which represents the
observable information in the model, consisting of events A C €2 with accessible probabilities.
This collection F must satisfy certain desirable properties. For example, if we can assign a
probability to an event A, we should also be able to assign a probability to A¢ := Q\ A.
This motivates the requirement that A € F implies A € F. More generally, F must be rich
enough to support operations needed for a coherent probability assignment.

Definition 1.1 A collection F is said to be a o-algebra (a.k.a. o-field) if it satisfies
the following properties:

1. Qe F;

2. (closed under complementation) if A € F, then A¢ € F;

3. (closed under countable union) for any A, A, --- € F, U2 A, € F.
The pair (2, F) is called a measurable space, and A € F is called a measurable set.



The first property ensures that we know the probability of the entire sample space, which
is naturally 1. The second property has been discussed above, reflecting the need for com-
plements of events to also be measurable. The third property states that if we know the
probabilities of a sequence of events, we should also be able to determine the probability
that the sequence of events occurring simultaneously.

Some properties of a o-algebra:
1. o F.

2. By De Morgan’s law, Properties 2 and 3 imply that a o-algebra is closed under count-
able union: for any {A4,}>°, C F, N2 A, € F.

Example 1.1
1. The collection F = {@,Q} is called a trivial o-algebra.
2. For any A C Q, F =0(A) := {9, A, A°,Q} is the o-algebra generated by the set
A.
3. In general, for any collection of subsets C C 29, where 29 is the power set of €
which contains all subsets of 2, we denote by o(C) the smallest o-algebra generated
by C.

Example 1.2 A coin is tossed twice and the outcome is recorded as H for a head,
and T for a tail. The sample space is then Q = {HH,HT,TH,TT}. Let C =
{{HH},{HT,TH},{TT}}. Write down F = o(C).

Solution. Since C consists of 3 pairwise disjoint subsets of €, F will contain 23 =
subsets including €2 and &, which is given by

F={2,Q {HH},{HT,TH} {TT},{HH HT,TH},{HH,TT},{HT,TH,TT}}.

]

Example 1.3 Let d € N and let Q = R?. The Borel o-algebra, denoted by B(R?), is
the smallest o-algebra containing all open subsets of R%, i.e., B(R?) = ¢(O), where O is
the collection of all open subsets in R¢. It is the collection of subsets of R? generated by
open sets under countable unions, countable intersections, and complementation. Any
set in B(RY) is called a Borel set. In particular, any closed or open set in R is a Borel
set.

The next result shows that the Borel o-algebra B(R) can be generated by countably many
one-sided closed intervals of the form [—oo,a). This allows us to reduce many constructions
and proofs to countable operations, where the behavior of measure-zero or measure-one sets
is well controlled through countable additivity.



Theorem 1.1 The Borel o-algebra of R is generated by the collection C (i.e., B(R) =
o(C)), where
C ={(—00,a]:a € Q}.

Proof. Let Z be the collection of all open intervals. Using the density of Q in R, one can
show that every open set is a countable union of open intervals. Hence, B(R) = o(Z).

Next, we show that Z C ¢(C). For any a,b € R, b > a, we can find sequences of rational
numbers (a,), and (b,), such that b, > a,, a, | a and b, T b. Using this, we can express

(a’ b) = U(am bn] = U (<_OO7 bn] N (—OO, an]c) )

which verifies the claim. Hence, B(R) = o(Z) C o(C). On the other hand, each set in C is a
closed set, and thus a Borel set. This implies C C B(R), and thus ¢(C) C B(R). Therefore,
o(C) = B(R).

]

Proposition 1.2 Let F and G be two o-algebras. Then, F N G is again a o-algebra.
However, F U G is not necessarily a o-algebra.

Proof. We verify that F N G satisfies the 3 properties of a g-algebra if F and G are both
o-algebras:

1. Since F and G are o-algebras, 2 € F and 2 € G, which implies 2 € FNG.

2. Forany A € FNG,sothat A € F and A € G, we have A° € F and A° € G (the second
property of o-algebras), and so A€ FNG.

3. For any collection of subsets {A4,}°; such that A, € F NG for all n > 0, we have
UxX A, € F and U2 A, € G (the third property of o-algebras), whence Uy, A, €
FNGg.

To show that F U G might not be a g-algebra, we give the following counter-example:
define Q = {a,b,c}, F = {@,{a},{b,c},Q}, and G = {2, {b}, {a,c},Q}. It is easy to

check that F and G are o-algebras (exercise). However,
FUG = {Qv {a}’ {b}7 {av C}a {b, C}a Q}
is not a o-algebra (exercise). ]

If F and G are two o-algebras on the same sample space 2, we denote by F V G the
smallest o-algebra that contains both F and G, i.e., FV G = o(FUG).



2 Probability Measure

A measure defined on a measurable space (€2, F) is a way to assign a numerical value to an
event A € F that essentially quantifies their “size” or “extent”. In particular, a probability
measure is a special class of measure, which satisfies the following properties:

Definition 2.1 A probability measure P on a measurable space ({2, F) is a mapping
A € F— P(A) that satisfies the following properties:
1. for any A € F, P(A) € [0,1];
2. P(2) =1;
3. (countable additivity) let {A,,}5°, C F be a countable collection of pairwise disjoint
sets, i.e., A; N A; = & for 7 # j, we have

(00) - S

The tuple (Q, F,P) is called a probability space.

Remark 2.1.

1. If p: F — [0,00) satisfies only the third property and p(2) = 0, then p is called a
measure.

2. If u is a measure, then we call the tuple (£, F, 1) a measure space.
3. If 4(Q) < oo, then p is called a finite measure.

4. If there exists a collection A;, Ag,--- € F with US>, A, = Q, and p(A4,) < oo for all n,
then p is said to be a o-finite measure.

5. Probability measures C finite measures C o-finite measures.

The following are some fundamental properties of a probability measure.

Theorem 2.2 Let (Q, F,P) be a probability space, A, B € F, and {A,}>2, C F. The
following properties hold:
1. (monotonicity). If A C B, P(A) < P(B).
2. (sub-additivity). If A C U2 A, P(A) <P(UZ2,A,) <> 02 P(A,).
3. (continuity from below). If A, 1T A (i.e., A4 C Ay C--- and U2, A, = A). Then
P(A,) Tt P(A).
4. (continuity from above). If 4, | A (i.e., Ay D Ay D --- and Ny, A, = A). Then
P(A,) | P(A).

Proof. 1. Let C := B\A=BNA°. Then ANC =@ and AUC = B. By the countable



additivity and non-negativity of probability measures,

P(A) < P(A) + P(C) = P(B).

2. By the first property we have P(A) < P(US,A,). Hence, it suffices to show that
P(U2,A,) < > P(A,). To this end, let By := A, and for n = 2..., let B, :=
An\UZ;% Ay. Then, B,NB,, = @ for n # m, and U2, B,, = U>* ;| A,,. By the countable
additivity of probability measures and noting that B, C A,

P (G An> =P (G Bn) = iP(Bn) < iIP’(An).

3. Let By := Ay, and for n > 1, let B,, :== A,\A,—1. Then, {B,}2, is pairwise disjoint,
Up_Br = A, and U2, B, = A. Hence,

P(A,)=> P(By) 1Y P(By) =P <U Bk) =P(A).

4. Forany n > 1, let B,, := AS. Then, By C B, C --- and B,, T B := A°. Using Property
3, we have 1 —P(A,) =P(B,) 1 P(B) =1—P(A), and hence P(4,) | P(A).

]

Example 2.1 (Lebesgue measure) Let Q = [0,1] and F = B([0, 1]) be the Borel o-
algebra. Define the Lebesgue measure]| X on (€2, F) by, for any 0 <a < b <1,

A([a,b]) = b—a.

Compute A({a}) and A((a, b]).

Solution. The singleton {a} can be written as {a} = [a,a]. Hence, A\({a}) = A([a,a]) =
a —a = 0. In other words, a point in [0, 1] has no “length”. Using this, we can write

(a,b] = [a,b] N{a}®, whence A\((a,b]) = A([a,b]) — P({a}) = b — a. O

“The proof of Lebesgue measure defined on [0,1] is indeed a probability measure is out of the scope
of the course. More generally, we can define the Lebesgue measure A on (R, B(R)) analogously by
A([a,b]) =b—a for any a,b € R, a < b.

An event A € F is said to occur almost surely (a.s.) if P(A) =1. A set N C F is said
to be a P-null set if P(INV) = 0. In general, if p is a measure and u(A°) = 0, then we say that
A occurs almost everywhere (u-a.e.). To meaningfully talk about events that happen with
probability zero or one, we complete the o-algebra F so that all such events are guaranteed
to be measurable. The resulting o-algebra is called the P-completion:



Definition 2.2 Let (Q, F,[P) be a probability space. Then, the P-completion of F is
F' = F VN, where

N:={ACQ:ACN, N e F,PN)=0}

is the subsets of all P-null sets in F.

3 Random Variables

A random variable X is a measurable mapping from the sample space €2 to a suitable target
space (often R?) that assigns a value X (w) to each outcome w € Q, reflecting the statistical
quantity of interest. In order to describe the probability of {X € A}, the pre-image of
this event must lie in the information set (i.e., F) of the probability space (2, F,P). This
motivates the definition of a random variable:

Definition 3.1 Let (2, F) and (S, S) be measurable spaces. An F-measurable func-
tion is a map X :  — S such that, for any A € S,

X1 A) ={weQ: X(w)e A} € F.

A random wvariable is a measurable function defined on a probability space (€2, F,P).

When the o-algebra S of the target space S is generated by a collection of subsets A of
S. To show that X : Q — S is a random variable, it suffices to check that X '(A) € F for
any A € A. In particular:

o IfS={r,...,2,} and § = 2, it suffices to check that X *({z;}) € Fforalli=1,...,n.
A measurable function (resp. random variable) that takes finitely many values is also called
a simple function (resp. simple random variable).

e If (S,S) = (R, B(R)), it suffices to check X~ !([—00,a)) € F for all a € Q.

Proposition 3.1 Let S be a set, A be a collection of subsets of S, and § = o(A) be
the o-algebra generated by A. Then, X : (Q,F) — (5,8) is measurable if and only if
X1(A) € F for any A € A.

Proof. Let A € A. Since S = 0(A), we have A € S. By the measurability of X, we have
X 1A)eF.

Now suppose that X !(A) € F for any A € A. Define
G:={ACS: X YA eF}

By construction and the statement’s assumption, we have A] C G.
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We claim G is a o-algebra on S:
1. SeGsince X 1(S)=Q e F.

2. If A € G, we have X '(A) € G. Then, X '(A°) = Q\ X '(A) € F since F is a
o-algebra. This implies A° € G.

3. If {A,}22, € G, then X (U, An) =U, X 1(A,) e F,solU, A €G.

Since G is a o-algebra containing A, we have § = o(A) C G. Therefore, for every B € S,
we have B € G and hence X~ (B) € F, i.e., X is F/S-measurable.

]

Example 3.1 Let (2, F,P) be a probability space and A € F. The indicator function
T4:Q — {0,1} is a random variable given by

14(z) = 1, ifzeA;
AT =0, itxd A

Example 3.2 Continuing from Example determine whether the following are mea-
surable functions on (9, F) to (N, 2M0):

1. X returns the number of heads in the two tosses;

2. Y returns 1 if the first toss is a head, and 0 otherwise.

Solution.
1. X can take the values 0, 1, or 2.

X1({0}) = {TT}, X~'({1}) = {HT,TH}, X'({2}) = {HH}.

F contains all these subsets, whence X is a measurable function.
2. Y can take the values 0 or 1. Note that Y1 ({0}) = {TT,TH} ¢ F. Hence, Y is
not measurable.

]

The mapping Y in Example is not a random variable with respect to F, as F is
not sufficiently fine to capture the information about the outcome of the first coin toss. To
make Y measurable, a finer o-algebra is required. The smallest such o-algebra is defined
below:

Definition 3.2 Let X : Q — S. The o-algebra generated by X, denoted by o(X), is
defined as
o(X) ={X1(A): Ae S}



As shown in the next result, o(X) is indeed a o-algebra. By constructions, o(X) is the
smallest o-algebra such that X is a measurable function.

Theorem 3.2 o(X) is a o-algebra. In addition, for any o-algebra F of Q such that X
is F-measurable, we have o(X) C F.

Proof. We first show that o(X) is a o-algebra by verifying the three properties:
1. Q€o(X): Take A=S5, Q= X"19) € o(X).

2. B € 0(X) = B° € o(X): Let A € S such that B = X !(A) € o(X). Then,
B¢ = X"1(A°) € o(X) since A° € §.

3. B;,By, - Co(X)=UX,B, € 0(X): Let A, € S such that B, = X"!(A,) € o(X).
Since § is a o-algebra, U2 | A, € S, and thus

o(X)> X! (G An> = O XA, = D B,.

Therefore, o(X) is a o-algebra.

Now, suppose that X is F-measurable. For any B € o(X), we have B = X }(A) € F
since X is F-measurable. Hence, o(X) C F. O

Example 3.3 Continuing from Example [3.2] find o ().

Solution. Note that Y™1({0}) = {TT,TH} and Y~ ({1}) = {HT, HH}. Hence, o(Y) =
{9, {TT, TH},{HT,HH},Q}. One can also check that F = o(X). O

The following result says that composition of measurable functions is again measur-
able.

Theorem 3.3 Suppose that X : (2, F) — (S,S) and f : (S,S) — (U,U) are measurable
functions. Then, fo X : (Q,F) — (U,U) is also measurable.

Proof. 1t suffices to show that (f o X) '(A) € F for any A € U. Note that by the mea-
surability of f, f7'(A) € S for any A € U. Using this and the measurability of X, we
also have X 1(f~1(A)) € F for any A € S. The proof is thus complete by noting that
(f o X)7H(A) = X7 (f7H(A)). O

We also have the following generalizations, and the proof is omitted herein.



Theorem 3.4 Suppose that Xq,..., X, : (Q,F) — (R*, B(R")), and f : (R, B(R")) —
(R,B(R)) are measurable functions. Then, f(Xi,...,X,) : (2,F) — (R,R") is also

measurable.

Theorem implies that if {X;} , is a sequence of random variables, then > .  X;,
[T, X; are also random variables. In addition, as shown below, the supremum and infinium
of a sequence of random variables are again random variables. The proof is relegated to the
appendix for interested readers.

Theorem 3.5 If Xy,..., X, are R-valued random variables. Then, the following are
also random variables:

inf X,,, sup X,,, liminf X,,, limsup X,,.

Here,

liminf X, := lim (inf Xm) (mf X )
n n—oo \ m>n n m>n

limsup X,, := lim (Sup X | =inf <sup Xm) .
n m>n

n n—oo m>n

4 Distributions

The distribution Px of a random variable X describes how probability is assigned to the
possible values that X can take. In measure theory, Py is also called the pushforward measure

of P by X.

Definition 4.1 Let X be a random variable from the probability space (€2, F,P) to the
target space (5,8). The distribution (a.k.a. law) Px of X is a probability measure on
(S,S) defined by

Py(A) =P(X € A) = P({w : X(w) € A}), A€ S.

The proof that Py is a probability measure on the space (5,S) is left as an exercise. If
X takes finitely or countably many values, then

:P<U{w:X(w):x}> > P(X({=2})).

€A z€A

4.1 Distribution Function

If X takes values in R, its distribution is characterized by the probability over the Borel
sets, which are in particular generated by the intervals of the form [—o0,a), a € R. This
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motivates us to define the distribution function of a R-valued random variable.

Definition 4.2 Let X be a R-valued random variable. The distribution function of
X is defined as
Fx(z) =P(X € (—o0,2]) =P(X <z), z € R.

The following lists the properties of a distribution function.

Theorem 4.1 The distribution function Fx of a R-valued random variable X must
satisfy the following properties:
1. Fx is non-decreasing;
lim, , « Fx(z) =0 and lim, , Fx(z) = 1;
Fx is right-continuous, i.e., lim,|,, Fx(z) = Fx(zo);
Fx(zy) = limgy, Fx(z) = P(X < x9);
P(X =2) = Fx(z) — Fx(z7) = Fx(z) - P(X < x).

Ol WD

Proof.
1. Forany z <y, {X <z} C{X <y}, and so Fx(z) =P(X <z) <P(X <vy) = Fx(y).

2. {X <z}lTasz] —oo,and {X <z} 1 Q as x T co. Hence, the result follows from
Statements 3 and 4 of Theorem 2.2

3. Since {X <z} | {X < 0} as x | o, the result follows from Statement 4 of Theorem
22

4. Since {X <z} T {X < o} (NOT {X < x0}!), the result follows from Statement 3 of
Theorem [2.2]

5. Since {X =z} U{X <z} = {X <z}, and {X = 2z} N {X < 2} = &, we have
Fx(z)=P(X =2)+P(X <z)=Fx(z7) +P(X < z).

]

The next result shows that Properties 1-3 in Theorem characterize a distribution
function. We omit the proof herein.

Theorem 4.2 Let F': R — [0, 1] be a function that satisfies Properties 1-3 of Theorem
4.1l Then, F is the distribution function of some random variable X.

4.2 Density Function and the Radon-Nikodym Theorem

In basic probability courses, we learn that a continuous random variable admits a probability
density function, which allows us to compute probabilities and other statistical quantities
via integration. We now generalize this idea in a measure-theoretic setting. To do so, we
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first introduce the notion of absolute continuity, which allows us to compare the “fineness”
of two measures:

Definition 4.3 Let (S,S) be a measurable space, and let x and v be two measures
defined on (S, S). We say that p is absolutely continuous with respect to v, denoted
p <L v, if for every set A € S, v(A) =0 implies p(A) = 0.

The following provides a general condition a which a R-valued random variable admits a
density function.

Theorem 4.3 (Radon-Nikodym) Let X : (©,F,P) — R be a real-valued random
variable, and let Px denote the distribution of X. If Px is absolutely continuous with
respect to the Lebesgue measure A on R (i.e., Py < A), then there exists a measurable
function fx : R — [0,00), called the probability density function (pdf) of X, such

that

Px(B)=P(X € B) = / fx(x)dz, for all Borel sets B € B(R).
B

Here are some remarks regarding Theorem [4.3}

1.

A

The integral involving the density function is understood in the Lebesgue sense, which
will be discussed in detail in the next chapter.

The Radon—Nikodym theorem can be interpreted as a change of measure result: it
relates the probability measure IP to the Lebesgue measure A through a density function.
We will revisit this concept in the context of risk-neutral measures and Girsanov’s
theorem.

The density function fx is also referred to as the Radon—Nikodym derivative of P
with respect to A, and is denoted by

_dP

fx(a) = S5 @),

In particular, when the distribution function Flx is differentiable, fy = %FX.

Proof of Theorem 3.5

We first show that sup,, X,, is a random variable. Note that for any x € R,

{suan < x} = m{X" <z} €eF,

since each {X,, < z} € F by the measurability of X,,. Note that the equivalence of the
two sets holds since sup,, X,,(w) <z <= Xj(w) < z for all & € N. Since any Borel set
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is generated by the one-sided closed set (—oo,z], we conclude that sup, X, is a random
variable; see Proposition [3.1} To show that inf, X,, is a random variable, it suffices to note
that

inf X,, = —sup(—X,,).

n n

To show that liminf, X, is a random variable, let Y,, := inf,,>, X,,,, which is a random
variable using the proven fact about the infinium of random variables. Hence, liminf, X, =
sup,, Yy, which is a random variable, again using the proven fact about the supremum of
random variables. The fact that lim sup,, X,, is a random variable can be shown in a similar
manner.
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