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This chapter introduces fundamental concepts of abstract probability theory, which serves as
a focused digest of essential topics from real analysis required in the subsequent chapters. We
begin by defining a σ-algebra on a sample space Ω, which formalizes the notion of measurable
events. Next, we present the definition of probability from a measure-theoretic perspective.
Finally, we introduce random variables as measurable functions defined on the probability
space.

Key topics in this chapter:
1. σ-algebra;

2. Probability as a measure;

3. Random variables as measurable functions;

4. Distributions of random variables.

1 Sigma Algebra
Let Ω be a sample space, and let F be a collection of subsets of Ω, which represents the
observable information in the model, consisting of events A ⊆ Ω with accessible probabilities.
This collection F must satisfy certain desirable properties. For example, if we can assign a
probability to an event A, we should also be able to assign a probability to Ac := Ω \ A.
This motivates the requirement that A ∈ F implies Ac ∈ F . More generally, F must be rich
enough to support operations needed for a coherent probability assignment.

Definition 1.1 A collection F is said to be a σ-algebra (a.k.a. σ-field) if it satisfies
the following properties:

1. Ω ∈ F ;
2. (closed under complementation) if A ∈ F , then Ac ∈ F ;
3. (closed under countable union) for any A1, A2, · · · ∈ F , ∪∞

n=1An ∈ F .
The pair (Ω,F) is called a measurable space, and A ∈ F is called a measurable set.
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The first property ensures that we know the probability of the entire sample space, which
is naturally 1. The second property has been discussed above, reflecting the need for com-
plements of events to also be measurable. The third property states that if we know the
probabilities of a sequence of events, we should also be able to determine the probability
that the sequence of events occurring simultaneously.

Some properties of a σ-algebra:

1. ∅ ∈ F .

2. By De Morgan’s law, Properties 2 and 3 imply that a σ-algebra is closed under count-
able union: for any {An}∞n=1 ⊆ F , ∩∞

n=1An ∈ F .

Example 1.1
1. The collection F = {∅,Ω} is called a trivial σ-algebra.
2. For any A ⊆ Ω, F = σ(A) := {∅, A,Ac,Ω} is the σ-algebra generated by the set

A.
3. In general, for any collection of subsets C ⊆ 2Ω, where 2Ω is the power set of Ω

which contains all subsets of Ω, we denote by σ(C) the smallest σ-algebra generated
by C.

Example 1.2 A coin is tossed twice and the outcome is recorded as H for a head,
and T for a tail. The sample space is then Ω = {HH,HT, TH, TT}. Let C =
{{HH}, {HT, TH}, {TT}}. Write down F = σ(C).

Solution. Since C consists of 3 pairwise disjoint subsets of Ω, F will contain 23 = 8
subsets including Ω and ∅, which is given by

F = {∅,Ω, {HH}, {HT, TH}, {TT}, {HH,HT, TH}, {HH,TT}, {HT, TH, TT}}.

Example 1.3 Let d ∈ N and let Ω = Rd. The Borel σ-algebra, denoted by B(Rd), is
the smallest σ-algebra containing all open subsets of Rd, i.e., B(Rd) = σ(O), where O is
the collection of all open subsets in Rd. It is the collection of subsets of Rd generated by
open sets under countable unions, countable intersections, and complementation. Any
set in B(Rd) is called a Borel set. In particular, any closed or open set in Rd is a Borel
set.

The next result shows that the Borel σ-algebra B(R) can be generated by countably many
one-sided closed intervals of the form [−∞, a). This allows us to reduce many constructions
and proofs to countable operations, where the behavior of measure-zero or measure-one sets
is well controlled through countable additivity.
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Theorem 1.1 The Borel σ-algebra of R is generated by the collection C (i.e., B(R) =
σ(C)), where

C = {(−∞, a] : a ∈ Q}.

Proof. Let I be the collection of all open intervals. Using the density of Q in R, one can
show that every open set is a countable union of open intervals. Hence, B(R) = σ(I).

Next, we show that I ⊆ σ(C). For any a, b ∈ R, b > a, we can find sequences of rational
numbers (an)n and (bn)n such that bn > an, an ↓ a and bn ↑ b. Using this, we can express

(a, b) =
∞⋃
n=1

(an, bn] =
∞⋃
n=1

((−∞, bn] ∩ (−∞, an]
c) ,

which verifies the claim. Hence, B(R) = σ(I) ⊆ σ(C). On the other hand, each set in C is a
closed set, and thus a Borel set. This implies C ⊆ B(R), and thus σ(C) ⊆ B(R). Therefore,
σ(C) = B(R).

Proposition 1.2 Let F and G be two σ-algebras. Then, F ∩ G is again a σ-algebra.
However, F ∪ G is not necessarily a σ-algebra.

Proof. We verify that F ∩ G satisfies the 3 properties of a σ-algebra if F and G are both
σ-algebras:

1. Since F and G are σ-algebras, Ω ∈ F and Ω ∈ G, which implies Ω ∈ F ∩ G.

2. For any A ∈ F ∩G, so that A ∈ F and A ∈ G, we have Ac ∈ F and Ac ∈ G (the second
property of σ-algebras), and so Ac ∈ F ∩ G.

3. For any collection of subsets {An}∞n=1 such that An ∈ F ∩ G for all n > 0, we have
∪∞

n=1An ∈ F and ∪∞
n=1An ∈ G (the third property of σ-algebras), whence ∪∞

n=1An ∈
F ∩ G.

To show that F ∪ G might not be a σ-algebra, we give the following counter-example:
define Ω := {a, b, c}, F := {∅, {a}, {b, c},Ω}, and G := {∅, {b}, {a, c},Ω}. It is easy to
check that F and G are σ-algebras (exercise). However,

F ∪ G = {∅, {a}, {b}, {a, c}, {b, c},Ω}

is not a σ-algebra (exercise).

If F and G are two σ-algebras on the same sample space Ω, we denote by F ∨ G the
smallest σ-algebra that contains both F and G, i.e., F ∨ G = σ(F ∪ G).
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2 Probability Measure
A measure defined on a measurable space (Ω,F) is a way to assign a numerical value to an
event A ∈ F that essentially quantifies their “size” or “extent”. In particular, a probability
measure is a special class of measure, which satisfies the following properties:

Definition 2.1 A probability measure P on a measurable space (Ω,F) is a mapping
A ∈ F 7→ P(A) that satisfies the following properties:

1. for any A ∈ F , P(A) ∈ [0, 1];
2. P(Ω) = 1;
3. (countable additivity) let {An}∞n=1 ⊆ F be a countable collection of pairwise disjoint

sets, i.e., Ai ∩ Aj = ∅ for i ̸= j, we have

P

(
∞⋃
n=1

An

)
=

∞∑
n=1

P(An).

The tuple (Ω,F ,P) is called a probability space.

Remark 2.1.

1. If µ : F → [0,∞) satisfies only the third property and µ(∅) = 0, then µ is called a
measure.

2. If µ is a measure, then we call the tuple (Ω,F , µ) a measure space.

3. If µ(Ω) < ∞, then µ is called a finite measure.

4. If there exists a collection A1, A2, · · · ∈ F with ∪∞
n=1An = Ω, and µ(An) < ∞ for all n,

then µ is said to be a σ-finite measure .

5. Probability measures ⊂ finite measures ⊂ σ-finite measures.

The following are some fundamental properties of a probability measure.

Theorem 2.2 Let (Ω,F ,P) be a probability space, A,B ∈ F , and {An}∞n=1 ⊆ F . The
following properties hold:

1. (monotonicity). If A ⊆ B, P(A) ≤ P(B).
2. (sub-additivity). If A ⊆ ∪∞

n=1An, P(A) ≤ P(∪∞
n=1An) ≤

∑∞
n=1 P(An).

3. (continuity from below). If An ↑ A (i.e., A1 ⊆ A2 ⊆ · · · and ∪∞
n=1An = A). Then

P(An) ↑ P(A).
4. (continuity from above). If An ↓ A (i.e., A1 ⊃ A2 ⊃ · · · and ∩∞

n=1An = A). Then
P(An) ↓ P(A).

Proof. 1. Let C := B\A = B ∩ Ac. Then A ∩ C = ∅ and A ∪ C = B. By the countable
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additivity and non-negativity of probability measures,

P(A) ≤ P(A) + P(C) = P(B).

2. By the first property we have P(A) ≤ P(∪∞
n=1An). Hence, it suffices to show that

P(∪∞
n=1An) ≤

∑∞
n=1 P(An). To this end, let B1 := A1, and for n = 2 . . . , let Bn :=

An\∪n−1
k=1Ak. Then, Bn∩Bm = ∅ for n ̸= m, and ∪∞

n=1Bn = ∪∞
n=1An. By the countable

additivity of probability measures and noting that Bn ⊆ An,

P

(
∞⋃
n=1

An

)
= P

(
∞⋃
n=1

Bn

)
=

∞∑
n=1

P(Bn) ≤
∞∑
n=1

P(An).

3. Let B1 := A1, and for n ≥ 1, let Bn := An\An−1. Then, {Bn}∞n=1 is pairwise disjoint,
∪n

k=1Bk = An, and ∪∞
k=1Bk = A. Hence,

P(An) =
n∑

k=1

P (Bk) ↑
∞∑
k=1

P (Bk) = P

(
∞⋃
k=1

Bk

)
= P(A).

4. For any n ≥ 1, let Bn := Ac
n. Then, B1 ⊆ B2 ⊆ · · · and Bn ↑ B := Ac. Using Property

3, we have 1− P(An) = P(Bn) ↑ P(B) = 1− P(A), and hence P(An) ↓ P(A).

Example 2.1 (Lebesgue measure) Let Ω = [0, 1] and F = B([0, 1]) be the Borel σ-
algebra. Define the Lebesgue measurea λ on (Ω,F) by, for any 0 ≤ a ≤ b ≤ 1,

λ([a, b]) = b− a.

Compute λ({a}) and λ((a, b]).

Solution. The singleton {a} can be written as {a} = [a, a]. Hence, λ({a}) = λ([a, a]) =
a − a = 0. In other words, a point in [0, 1] has no “length”. Using this, we can write
(a, b] = [a, b] ∩ {a}c, whence λ((a, b]) = λ([a, b])− P({a}) = b− a.

aThe proof of Lebesgue measure defined on [0, 1] is indeed a probability measure is out of the scope
of the course. More generally, we can define the Lebesgue measure λ on (R,B(R)) analogously by
λ([a, b]) = b− a for any a, b ∈ R, a ≤ b.

An event A ∈ F is said to occur almost surely (a.s.) if P(A) = 1. A set N ⊆ F is said
to be a P-null set if P(N) = 0. In general, if µ is a measure and µ(Ac) = 0, then we say that
A occurs almost everywhere (µ-a.e.). To meaningfully talk about events that happen with
probability zero or one, we complete the σ-algebra F so that all such events are guaranteed
to be measurable. The resulting σ-algebra is called the P-completion:
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Definition 2.2 Let (Ω,F ,P) be a probability space. Then, the P-completion of F is
F ′ := F ∨N , where

N := {A ⊆ Ω : A ⊆ N, N ∈ F ,P(N) = 0}

is the subsets of all P-null sets in F .

3 Random Variables
A random variable X is a measurable mapping from the sample space Ω to a suitable target
space (often Rd) that assigns a value X(ω) to each outcome ω ∈ Ω, reflecting the statistical
quantity of interest. In order to describe the probability of {X ∈ A}, the pre-image of
this event must lie in the information set (i.e., F) of the probability space (Ω,F ,P). This
motivates the definition of a random variable:

Definition 3.1 Let (Ω,F) and (S,S) be measurable spaces. An F-measurable func-
tion is a map X : Ω → S such that, for any A ∈ S,

X−1(A) := {ω ∈ Ω : X(ω) ∈ A} ∈ F .

A random variable is a measurable function defined on a probability space (Ω,F ,P).

When the σ-algebra S of the target space S is generated by a collection of subsets A of
S. To show that X : Ω → S is a random variable, it suffices to check that X−1(A) ∈ F for
any A ∈ A. In particular:

• If S = {x1, . . . , xn} and S = 2S, it suffices to check that X−1({xi}) ∈ F for all i = 1, . . . , n.
A measurable function (resp. random variable) that takes finitely many values is also called
a simple function (resp. simple random variable).

• If (S,S) = (R,B(R)), it suffices to check X−1([−∞, a)) ∈ F for all a ∈ Q.

Proposition 3.1 Let S be a set, A be a collection of subsets of S, and S = σ(A) be
the σ-algebra generated by A. Then, X : (Ω,F) → (S,S) is measurable if and only if
X−1(A) ∈ F for any A ∈ A.

Proof. Let A ∈ A. Since S = σ(A), we have A ∈ S. By the measurability of X, we have
X−1(A) ∈ F .

Now suppose that X−1(A) ∈ F for any A ∈ A. Define

G := {A ⊆ S : X−1(A) ∈ F}.

By construction and the statement’s assumption, we have A] ⊆ G.
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We claim G is a σ-algebra on S:

1. S ∈ G since X−1(S) = Ω ∈ F .

2. If A ∈ G, we have X−1(A) ∈ G. Then, X−1(Ac) = Ω \ X−1(A) ∈ F since F is a
σ-algebra. This implies Ac ∈ G.

3. If {An}∞n=1 ⊆ G, then X−1(
⋃

n An) =
⋃

nX
−1(An) ∈ F , so

⋃
nAn ∈ G.

Since G is a σ-algebra containing A, we have S = σ(A) ⊆ G. Therefore, for every B ∈ S,
we have B ∈ G and hence X−1(B) ∈ F , i.e., X is F/S-measurable.

Example 3.1 Let (Ω,F ,P) be a probability space and A ∈ F . The indicator function
1A : Ω → {0, 1} is a random variable given by

1A(x) =

{
1, if x ∈ A;

0, if x ̸∈ A.

Example 3.2 Continuing from Example 1.2, determine whether the following are mea-
surable functions on (Ω,F) to (N0, 2

N0):
1. X returns the number of heads in the two tosses;
2. Y returns 1 if the first toss is a head, and 0 otherwise.

Solution.
1. X can take the values 0, 1, or 2.

X−1({0}) = {TT}, X−1({1}) = {HT, TH}, X−1({2}) = {HH}.

F contains all these subsets, whence X is a measurable function.
2. Y can take the values 0 or 1. Note that Y −1({0}) = {TT, TH} ̸∈ F . Hence, Y is

not measurable.

The mapping Y in Example 3.2 is not a random variable with respect to F , as F is
not sufficiently fine to capture the information about the outcome of the first coin toss. To
make Y measurable, a finer σ-algebra is required. The smallest such σ-algebra is defined
below:

Definition 3.2 Let X : Ω → S. The σ-algebra generated by X, denoted by σ(X), is
defined as

σ(X) := {X−1(A) : A ∈ S}.
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As shown in the next result, σ(X) is indeed a σ-algebra. By constructions, σ(X) is the
smallest σ-algebra such that X is a measurable function.

Theorem 3.2 σ(X) is a σ-algebra. In addition, for any σ-algebra F of Ω such that X
is F -measurable, we have σ(X) ⊆ F .

Proof. We first show that σ(X) is a σ-algebra by verifying the three properties:

1. Ω ∈ σ(X): Take A = S, Ω = X−1(S) ∈ σ(X).

2. B ∈ σ(X) ⇒ Bc ∈ σ(X): Let A ∈ S such that B = X−1(A) ∈ σ(X). Then,
Bc = X−1(Ac) ∈ σ(X) since Ac ∈ S.

3. B1, B2, · · · ⊆ σ(X) ⇒ ∪∞
n=1Bn ∈ σ(X): Let An ∈ S such that Bn = X−1(An) ∈ σ(X).

Since S is a σ-algebra, ∪∞
n=1An ∈ S, and thus

σ(X) ∋ X−1

(
∞⋃
n=1

An

)
=

∞⋃
n=1

X−1(An) =
∞⋃
n=1

Bn.

Therefore, σ(X) is a σ-algebra.

Now, suppose that X is F -measurable. For any B ∈ σ(X), we have B = X−1(A) ∈ F
since X is F -measurable. Hence, σ(X) ⊆ F .

Example 3.3 Continuing from Example 3.2, find σ(Y ).

Solution. Note that Y −1({0}) = {TT, TH} and Y −1({1}) = {HT,HH}. Hence, σ(Y ) =
{∅, {TT, TH}, {HT,HH},Ω}. One can also check that F = σ(X).

The following result says that composition of measurable functions is again measur-
able.

Theorem 3.3 Suppose that X : (Ω,F) → (S,S) and f : (S,S) → (U,U) are measurable
functions. Then, f ◦X : (Ω,F) → (U,U) is also measurable.

Proof. It suffices to show that (f ◦ X)−1(A) ∈ F for any A ∈ U . Note that by the mea-
surability of f , f−1(A) ∈ S for any A ∈ U . Using this and the measurability of X, we
also have X−1(f−1(A)) ∈ F for any A ∈ S. The proof is thus complete by noting that
(f ◦X)−1(A) = X−1(f−1(A)).

We also have the following generalizations, and the proof is omitted herein.
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Theorem 3.4 Suppose that X1, . . . , Xn : (Ω,F) → (Rn,B(Rn)), and f : (Rn,B(Rn)) →
(R,B(R)) are measurable functions. Then, f(X1, . . . , Xn) : (Ω,F) → (R,Rn) is also
measurable.

Theorem 3.4 implies that if {Xi}ni=1 is a sequence of random variables, then
∑n

i=1 Xi,∏n
i=1Xi are also random variables. In addition, as shown below, the supremum and infinium

of a sequence of random variables are again random variables. The proof is relegated to the
appendix for interested readers.

Theorem 3.5 If X1, . . . , Xn are R-valued random variables. Then, the following are
also random variables:

inf
n
Xn, sup

n
Xn, lim inf

n
Xn, lim sup

n
Xn.

Here,

lim inf
n

Xn := lim
n→∞

(
inf
m≥n

Xm

)
= sup

n

(
inf
m≥n

Xm

)
,

lim sup
n

Xn := lim
n→∞

(
sup
m≥n

Xm

)
= inf

n

(
sup
m≥n

Xm

)
.

4 Distributions
The distribution PX of a random variable X describes how probability is assigned to the
possible values that X can take. In measure theory, PX is also called the pushforward measure
of P by X.

Definition 4.1 Let X be a random variable from the probability space (Ω,F ,P) to the
target space (S,S). The distribution (a.k.a. law) PX of X is a probability measure on
(S,S) defined by

PX(A) = P(X ∈ A) = P({ω : X(ω) ∈ A}), A ∈ S.

The proof that PX is a probability measure on the space (S,S) is left as an exercise. If
X takes finitely or countably many values, then

PX(A) = P

(⋃
x∈A

{ω : X(ω) = x}

)
=
∑
x∈A

P(X−1({x})).

4.1 Distribution Function

If X takes values in R, its distribution is characterized by the probability over the Borel
sets, which are in particular generated by the intervals of the form [−∞, a), a ∈ R. This

9



motivates us to define the distribution function of a R-valued random variable.

Definition 4.2 Let X be a R-valued random variable. The distribution function of
X is defined as

FX(x) := P(X ∈ (−∞, x]) = P(X ≤ x), x ∈ R.

The following lists the properties of a distribution function.

Theorem 4.1 The distribution function FX of a R-valued random variable X must
satisfy the following properties:

1. FX is non-decreasing;
2. limx→−∞ FX(x) = 0 and limx→∞ FX(x) = 1;
3. FX is right-continuous, i.e., limx↓x0 FX(x) = FX(x0);
4. FX(x

−
0 ) := limx↑x0 FX(x) = P(X < x0);

5. P(X = x) = FX(x)− FX(x
−) = FX(x)− P(X < x).

Proof.

1. For any x ≤ y, {X ≤ x} ⊆ {X ≤ y}, and so FX(x) = P(X ≤ x) ≤ P(X ≤ y) = FX(y).

2. {X ≤ x} ↓ ∅ as x ↓ −∞, and {X ≤ x} ↑ Ω as x ↑ ∞. Hence, the result follows from
Statements 3 and 4 of Theorem 2.2.

3. Since {X ≤ x} ↓ {X ≤ x0} as x ↓ x0, the result follows from Statement 4 of Theorem
2.2.

4. Since {X ≤ x} ↑ {X < x0} (NOT {X ≤ x0}!), the result follows from Statement 3 of
Theorem 2.2.

5. Since {X = x} ∪ {X < x} = {X ≤ x}, and {X = x} ∩ {X < x} = ∅, we have
FX(x) = P(X = x) + P(X < x) = FX(x

−) + P(X < x).

The next result shows that Properties 1-3 in Theorem 4.1 characterize a distribution
function. We omit the proof herein.

Theorem 4.2 Let F : R → [0, 1] be a function that satisfies Properties 1-3 of Theorem
4.1. Then, F is the distribution function of some random variable X.

4.2 Density Function and the Radon-Nikodym Theorem

In basic probability courses, we learn that a continuous random variable admits a probability
density function, which allows us to compute probabilities and other statistical quantities
via integration. We now generalize this idea in a measure-theoretic setting. To do so, we
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first introduce the notion of absolute continuity, which allows us to compare the “fineness”
of two measures:

Definition 4.3 Let (S,S) be a measurable space, and let µ and ν be two measures
defined on (S,S). We say that µ is absolutely continuous with respect to ν, denoted
µ ≪ ν, if for every set A ∈ S, ν(A) = 0 implies µ(A) = 0.

The following provides a general condition a which a R-valued random variable admits a
density function.

Theorem 4.3 (Radon–Nikodym) Let X : (Ω,F ,P) → R be a real-valued random
variable, and let PX denote the distribution of X. If PX is absolutely continuous with
respect to the Lebesgue measure λ on R (i.e., PX ≪ λ), then there exists a measurable
function fX : R → [0,∞), called the probability density function (pdf) of X, such
that

PX(B) = P(X ∈ B) =

∫
B

fX(x) dx, for all Borel sets B ∈ B(R).

Here are some remarks regarding Theorem 4.3:

1. The integral involving the density function is understood in the Lebesgue sense, which
will be discussed in detail in the next chapter.

2. The Radon–Nikodym theorem can be interpreted as a change of measure result: it
relates the probability measure P to the Lebesgue measure λ through a density function.
We will revisit this concept in the context of risk-neutral measures and Girsanov’s
theorem.

3. The density function fX is also referred to as the Radon–Nikodym derivative of P
with respect to λ, and is denoted by

fX(x) =
dP
dλ

(x).

In particular, when the distribution function FX is differentiable, fX = d
dx
FX .

A Proof of Theorem 3.5
We first show that supn Xn is a random variable. Note that for any x ∈ R,{

sup
n

Xn ≤ x

}
=
⋂
n

{Xn ≤ x} ∈ F ,

since each {Xn ≤ x} ∈ F by the measurability of Xn. Note that the equivalence of the
two sets holds since supn Xn(ω) ≤ x ⇐⇒ Xk(ω) ≤ x for all k ∈ N. Since any Borel set
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is generated by the one-sided closed set (−∞, x], we conclude that supnXn is a random
variable; see Proposition 3.1. To show that infnXn is a random variable, it suffices to note
that

inf
n
Xn = − sup

n
(−Xn).

To show that lim infn Xn is a random variable, let Yn := infm≥nXm, which is a random
variable using the proven fact about the infinium of random variables. Hence, lim infnXn =
supn Yn, which is a random variable, again using the proven fact about the supremum of
random variables. The fact that lim supnXn is a random variable can be shown in a similar
manner.
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